- A mineral processing plant requires excessive limestone and its consumption is critical where the supply must be consistent daily. The limestone is supplied by a satellite quarry owned by the mining company. From Past experience, the daily consumption of limestone by the mill is given by the following discrete probabilities:
Limestone Consumption
|
100
|
110
|
115
|
120
|
125
|
130
|
135
|
Probability, P(X)
|
0.2
|
0.150
|
0.2
|
0.1
|
0.15
|
0.10
|
0.10
|
Daily Limestone Production, x (t/day)
|
90
|
100
|
120
|
125
|
130
|
140
|
140
|
Probability, P(X)
|
0.05
|
0.1
|
0.10
|
0.20
|
0.25
|
0.15
|
0.15
|
Production Cost/Day($/t)
|
25
|
30
|
35
|
40
|
45
|
50
|
55
|
Probability, P(X)
|
0.1
|
0.05
|
0.25
|
0.2
|
0.3
|
0.05
|
0.05
|
A. Limestone consumption/day
| ||
Probability P(x)
|
Cumulative Probability
|
Limestone consumption(tons/day)
|
0.2
|
0.2
|
100
|
0.15
|
0.35
|
110
|
0.2
|
0.55
|
115
|
0.1
|
0.65
|
120
|
0.15
|
0.8
|
125
|
0.1
|
0.9
|
130
|
0.1
|
1
|
135
|
1
|
No.Trials
|
Random #
|
Simulated value
|
Cumulative consumption
| |
1
|
0.16
|
100
|
100
| |
2
|
0.57
|
120
|
220
| |
3
|
0.17
|
100
|
320
| |
4
|
0.81
|
130
|
450
| |
5
|
0.7
|
125
|
575
| |
6
|
0.21
|
110
|
685
| |
7
|
0.73
|
125
|
810
| |
8
|
0.78
|
125
|
935
| |
9
|
0.86
|
130
|
1065
| |
10
|
0.75
|
125
|
1190
| |
11
|
0.27
|
110
|
1300
| |
12
|
0.12
|
100
|
1400
| |
13
|
0.76
|
125
|
1525
| |
14
|
0.45
|
115
|
1640
| |
15
|
0.64
|
120
|
1760
| |
16
|
0.67
|
125
|
1885
| |
17
|
0.34
|
110
|
1995
| |
18
|
0.86
|
130
|
2125
| |
19
|
0.7
|
125
|
2250
| |
20
|
0.02
|
100
|
2350
| |
Total
|
2350
| |||
Average
|
117.5
| |||
Expected value E(x):
| ||||
E(x)= 0.2x100 + 0.15x110 + 0.2x115 + 0.1x120 + 0.15x125 + 0.1x130 + 0.1x135 = 116.75 tonnes
|
B. Limestone Production/day
| |||
Probability P(x)
|
Cumulative Probability
|
Limestone consumption(tons/day)
| |
0.05
|
0.05
|
90
| |
0.1
|
0.15
|
100
| |
0.1
|
0.25
|
120
| |
0.2
|
0.45
|
125
| |
0.25
|
0.7
|
130
| |
0.15
|
0.85
|
140
| |
0.15
|
1
|
140
| |
1
|
No.Trials
|
Random #
|
Simulated value
|
Cumulative consumption
| |
1
|
0.34
|
125
|
125
| |
2
|
0.42
|
125
|
250
| |
3
|
0.59
|
130
|
380
| |
4
|
0.51
|
130
|
510
| |
5
|
0.76
|
140
|
650
| |
6
|
0.37
|
125
|
775
| |
7
|
0.56
|
130
|
905
| |
8
|
0.86
|
140
|
1045
| |
9
|
0.87
|
140
|
1185
| |
10
|
0.03
|
90
|
1275
| |
11
|
0.73
|
140
|
1415
| |
12
|
0.77
|
140
|
1555
| |
13
|
0.67
|
130
|
1685
| |
14
|
0.39
|
125
|
1810
| |
15
|
0.07
|
100
|
1910
| |
16
|
0.72
|
140
|
2050
| |
17
|
0.47
|
130
|
2180
| |
18
|
0.81
|
140
|
2320
| |
19
|
0.71
|
140
|
2460
| |
20
|
0.25
|
125
|
2585
| |
Total
|
2585
| |||
Average
|
129.25
| |||
Expected value E(x):
| ||||
E(x) = 0.05x90 + 0.1x100 + 0.1x120 + 0.2x125 + 0.25x130 + 0.15x140 + 0.15x140 =126 tonnes
|
C. Production cost /day
| ||
Probability P(x)
|
Cumulative Probability
|
Limestone Consumption(tons/day)
|
0.1
|
0.1
|
25
|
0.05
|
0.15
|
30
|
0.25
|
0.4
|
35
|
0.2
|
0.6
|
40
|
0.3
|
0.9
|
45
|
0.05
|
0.95
|
50
|
0.05
|
1
|
55
|
1
|
No.Trials
|
Random #
|
Simulated value
|
Cumulative consumption
| |
1
|
0.9
|
50
|
50
| |
2
|
0.45
|
40
|
90
| |
3
|
0.25
|
35
|
125
| |
4
|
0.67
|
45
|
170
| |
5
|
0.55
|
40
|
210
| |
6
|
0.05
|
25
|
235
| |
7
|
0.98
|
55
|
290
| |
8
|
0.3
|
35
|
325
| |
9
|
0.5
|
40
|
365
| |
10
|
0.77
|
45
|
410
| |
11
|
0.35
|
35
|
445
| |
12
|
0.67
|
45
|
490
| |
13
|
0.85
|
45
|
535
| |
14
|
0.53
|
40
|
575
| |
15
|
0.91
|
50
|
625
| |
16
|
0.03
|
25
|
650
| |
17
|
0.2
|
35
|
685
| |
18
|
0.13
|
30
|
715
| |
19
|
0.4
|
40
|
755
| |
20
|
0.8
|
45
|
800
| |
Total
|
800
| |||
Average
|
40
| |||
Expected value E(x):
| ||||
E(x) = 0.1x25 + 0.05x30 + 0.25x35 + 0.2x40 + 0.3x45 + 0.05x50 + 0.05x55 = K39.5/t per day
|
Rest Houses
|
A
|
B
|
C
|
D
|
E
|
F
|
G
|
H
|
I
|
Est.Votes
|
0
|
500
|
1200
|
800
|
2500
|
1700
|
3000
|
1200
|
400
|
Probability (Px)
|
0.0
|
0.05
|
0.20
|
0.05
|
0.20
|
0.10
|
0.30
|
0.10
|
0.00
|
Rest Houses
|
A
|
B
|
C
|
D
|
E
|
F
|
G
|
H
|
I
|
Est.Votes
|
0
|
1000
|
500
|
1000
|
3000
|
2000
|
3000
|
1000
|
500
|
Probability (Px)
|
0.0
|
0.05
|
0.10
|
0.15
|
0.20
|
0.15
|
0.10
|
0.10
|
0.05
|
Probability P(x)
|
Cumulative Prob.
|
First Votes
|
0
|
0
|
400
|
0.05
|
0.05
|
500
|
0.05
|
0.1
|
800
|
0.2
|
0.3
|
1200
|
0.1
|
0.4
|
1200
|
0.1
|
0.5
|
1700
|
0.2
|
0.7
|
2500
|
0.3
|
1
|
3000
|
1
|
No.of trials
|
Random #
|
Simulated value
|
Cumulative 1St votes
| |
1
|
0.45
|
1700
|
1700
| |
2
|
0.22
|
1200
|
2900
| |
3
|
0.98
|
3000
|
5900
| |
4
|
0.28
|
1200
|
7100
| |
5
|
0.94
|
3000
|
10100
| |
6
|
0.36
|
1200
|
11300
| |
7
|
0.57
|
2500
|
13800
| |
8
|
0.16
|
1200
|
15000
| |
9
|
0.21
|
1200
|
16200
| |
10
|
0.12
|
1200
|
17400
| |
11
|
0.92
|
3000
|
20400
| |
12
|
0.81
|
3000
|
23400
| |
13
|
0.98
|
3000
|
26400
| |
14
|
0.88
|
3000
|
29400
| |
15
|
0.07
|
800
|
30200
| |
16
|
0.33
|
1200
|
31400
| |
17
|
0.48
|
1700
|
33100
| |
18
|
0.21
|
1200
|
34300
| |
19
|
0.88
|
3000
|
37300
| |
20
|
0.05
|
800
|
38100
| |
Total
|
38100
| |||
Average
|
1905
| |||
Expected value E(x):
|
Probability P(x)
|
Cumulative Prob.
|
First Votes
|
0
|
0
|
0
|
0.1
|
0.1
|
500
|
0.15
|
0.25
|
500
|
0.05
|
0.3
|
1000
|
0.15
|
0.45
|
1000
|
0.1
|
0.55
|
1000
|
0.15
|
0.7
|
2000
|
0.2
|
0.9
|
3000
|
0.1
|
1
|
3000
|
1
|
No.of trials
|
random#
|
simulated value
|
cummulative 1St votes
| ||
1
|
0.04
|
500
|
500
| ||
2
|
0.23
|
500
|
1000
| ||
3
|
0.33
|
1000
|
2000
| ||
4
|
0.64
|
2000
|
4000
| ||
5
|
0.06
|
500
|
4500
| ||
6
|
0.16
|
500
|
5000
| ||
7
|
0.59
|
2000
|
7000
| ||
8
|
0.43
|
1000
|
8000
| ||
9
|
0.81
|
3000
|
11000
| ||
10
|
0.94
|
3000
|
14000
| ||
Total
|
14000
| ||||
Average
|
1400
|
Per CW
| |||
Expected Value E(x):
| |||||
E(x) = 0.1x500+0.15x500+0.05x1000+0.15x1000+0.1x1000+0.15x2000+0.2x3000+0.1x3000=K1625/CW
|
To sum up, it is predicted that the candidate should plan ahead and must be prepared to allocate a budget between K14000 and K16250 to each council ward in order to avoid inconvenience. In doing this, the candidate is expecting about 1905 to 1995 1st votes in each council wards. There may be deviations in each council wards but we just estimated that for CW with large number of 1st votes will be distributed to those that have less number of 1st votes so that we have a fair distribution of our estimates. Having done all these, we are confident that we will spend the above amount of money to score the ex amount of 1st votes.